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Abstract--The solution of the one-dimensional, linear, inverse, unsteady heat conduction problem (IHCP) 
in a slab geometry is analysed. The initial temperature is known, together with a condition on an accessible 
part of the boundary of the body under investigation. Additional temperature measurements in time are 
taken with a sensor positioned at an arbitrary location within the solid material, and it is required to 
determine t]ae temperature and the heat flux on the remaining part of the unspecified boundary. As the 
problem is :tmproperly posed the direct method of solution cannot be used and hence the least squares, 
regularization and energy method have been introduced into the boundary element method (BEM) for- 
mulation. When noise is present in the measured data some of the numerical results obtained using the 
least squares method exhibit oscillatory behaviour, but these large oscillations are substantially reduced 
on the introduction of the minimal energy technique based on minimizing the kinetic energy functional 
subject to certain constraints. Furthermore, the numerical results obtained using this technique compare 
well with the results obtained using regularization procedures, showing a good stable estimation of the 
available test solutions. Further, the constraints, subject to which the minimization is performed, depend 
on a small ..;aarameter of which selection is more natural and easier to implement than the choice of the 

regularization parameter, which is always a difficult task when using the regularization procedures. 

1. INTRODUCTION 

Inverse problems arise in many heat transfer situ- 
ations when experimental difficulties are encountered 
in measuring or producing the appropriate boundary 
conditions. A problem that frequently occurs in prac- 
tice in heat conduction theory consists of  estimating 
the temperature and the heat flux values on the space 
surface of  a conducting solid through the use of  exper- 
imental measurements taken within or at a secondary 
space surface of  the body, i,e. the inverse heat con- 
duction problem (IHCP), see ref. 11]. Typical practical 
applications are the estimation of  the temperature and 
the heat flux at the surface of  the body under inves- 
tigation, e.g. re-entry vehicles, combustion chambers, 
calorimeter-type instrumentation, etc. 

Nevertheless the ICHP is more difficult to solve, 
both analytically and numerically, than a direct prob- 
lem. In the direcl: problem the errors arising from 
boundary value measurements are damped when eva- 
luating the interior temperature because of  the diffus- 
ive nature of  the iheat conduction process [2], whilst 
in inverse problems internal measurement errors are 
extrapolated and amplified as the unknown boundary 
values are calculated. Consequently special corrective 
methods should be employed in order, to reduce the 
effect of  error growth and propagation when dealing 
with inverse problems. In addition, there may be ques- 
tions of  the existence and the uniqueness of  the surface 
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condition history, as predicted by discrete and rela- 
tively inaccurate internal measurements or modelling 
errors. The obvious noise, present in any measure- 
ment, ensures that any solution obtained is only 
approximate. Because of  these highly sensitive con- 
ditions the IHCP is mathematically regarded as an ill- 
posed problem in the sense as described by Hadamard  

[31. 
In the last 30 years many theoretical studies, e.g. 

refs. [4-6], have been undertaken for solving the 
IHCP,  providing an insight into the mathematics of  
the problem although they introduce additional 
hypotheses which are not, in general, satisfied in prac- 
tice. Consequently, in practical problems numerical 
methods appear more useful although they are quite 
complicated and require modifications and powerful 
techniques to be applied when dealing with ill-posed 
problems. 

The first step in solving numerically an IHCP is to 
discretize the solution domain using finite differences 
or finite elements or, to use boundary discretizations 
such as boundary elements. The advantage of  apply- 
ing finite differences and finite elements is that in these 
methods the fully nonlinear heat conduction equation 
can be discretized, although they usually produce 
instabilities in the numerical schemes and require a 

, la rge  number of  cells or elements. On the other hand, 
when using the BEM only the boundary needs to be 
discretized and this gives rise to savings in com- 
putation time and storage requirements. In addition, 
in the BEM no domain discretization is needed and 
so the location of  internal points, where the tem- 
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perature is measured, can be chosen in a quite arbi- 
trary way. Furthermore, unlike other numerical 
methods, the BEM gives in a straightforward manner 
both the unknown surface temperature and the heat 
flux. Although the surface heat flux is more difficult 
to calculate accurately than the surface temperature, 
see ref. [7], their direct determination avoids the 
additional finite differencing required in the con- 
ventional finite element approach [8]. It is only in the 
last few years that the BEM has been considered in 
the study of IHCP and has been utilized by, for exam- 
ple, refs. [9-12]. 

After the boundary value problem has been dis- 
cretized the next step in solving an improperly posed 
problem is to stabilize the numerical solution. The 
implementation of the known boundary information, 
together with the discrete internal measurements, 
always reduces to finding the solution of an algebraic 
system of equations, no matter which numerical 
method is used. At this stage the system of equations 
is considerably smaller when using the BEM than that 
generated by an equivalent finite-difference or finite 
element approximation. Nevertheless, since the prob- 
lem is not well-posed, a direct method of solution of 
this system of equations, such as a Gauss elimination 
procedure (in the linear case), will not be possible 
or will produce very inaccurate results, and special 
corrective procedures must be introduced. This inac- 
curacy is caused by the extreme sensitivity (instability) 
of the solution to the inaccurate experimental 
measurements. 

To overcome the stability problem, one possible 
approach is to record the temperature history at more 
locations than the number of unknowns in the 
algebraic equations to be solved. Then the system of 
equations becomes overdetermined and can be solved 
using a least squares method that minimizes the error 
between the computed and measured sensor tem- 
peratures. As more data are known this will reduce 
the non-uniqueness caused by random errors, i.e. 
reduce the space on which solutions are determined 
independently of the measure (norm) of continuous 
dependence. However, for multidimensional prob- 
lems it may not be possible to introduce more sensor 
measurements because of the large number of 
elements already required for the discretization. In 
addition, the method presents inconsistency and for 
strongly ill-posed problems, such as the backward 
heat equation, this procedure leads to incorrect results 
even for free error measured data [13]. 

A method of dealing with such problems is the 
regularization technique which modifies the least 
squares method by adding a regularization coefficient, 
which multiplies the sum of the squares of the discrete 
temperatures or heat fluxes or their consecutive 
differences, as described by Tikhonov and Arsenin 
[14]. The quasi-inversion method was developed by 
Weber [15] and it approximates the heat equation by 
a hyperbolic equation, namely the telegraph equation, 
for which the problem becomes well-posed. Other 

methods which have been adopted in the last few 
years, and are based more or less on the regularization 
process, are the function specification [16], the mini- 
mal energy [17], the least squares adjustment [18], the 
conjugate gradient with the adjoint equation [19], the 
mollification [20] and the dynamic programming [21] 
methods. 

In this study the solution of the one-dimensional, 
unsteady linear heat conduction equation in a slab 
geometry with constant physical properties is 
analysed. The IHCP is formulated as follows. The 
initial temperature distribution is specified, together 
with a general space boundary condition of the Robin 
type, which involves a relationship between the tem- 
perature and the heat flux. In addition, temperature 
readings at certain points within the interior domain 
and at particular times are known. The aim of this 
paper is to use the BEM and the minimal energy 
technique to solve this IHCP, namely to determine 
the temperature and the heat flux on the remaining 
boundary and using this information, and the given 
boundary conditions, the temperature throughout the 
whole domain. The BEM for the numerical solution 
of this class of improperly posed problems is applied, 
since this choice of method does not require any 
domain discretization. This means that the unknowns 
are calculated only at boundary nodes and at selected 
internal points. Due to the improper nature of the 
IHCP, the direct method has been found not to be 
applicable and therefore the least squares, the reg- 
ularization and the minimal energy methods have 
been introduced into the BEM and the results are 
compared with the analytical solutions over a wide 
range of test examples. The effects of the location of 
internal temperature measurements in relation to the 
distance from the surface where the temperature and 
the heat flux are unknown are also investigated. For 
exact data the results for the surface temperature and 
heat flux obtained using the numerical methods show 
good agreement with the analytical solution. It is 
shown how the unknown surface temperature and 
heat flux can be determined accurately over a large 
range of the time domain, and by extending the known 
boundary condition for a suitable additional time, can 
produce accurate results over the whole of the earlier 
time domain. However, when noise is present in the 
data the least squares method produced oscillatory 
and inaccurate results and in this case these insta- 
bilities can be alleviated by using the minimal energy 
method, which is based on the minimization of 
the kinetic energy functional subject to certain con- 
straints. 

Finally the numerical results for the surface tem- 
perature and heat flux obtained using the minimal 
energy technique compare well with the numerical 
results obtained using zeroth- or first-order reg- 
ularization procedures and offer a stable and good 
approximate estimate of the available analytical solu- 
tions. 
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2. FORMULATION OF THE PROBLEM 

The mathematical formulation of the IHCP con- 
sidered in this study can be described by the following 
boundary value problem. The governing heat con- 
duction equation in a slab geometry, namely 

OT(x,t) t? 2 T(x,t) 
for (x,t) e (0,1) × (0 ,~ )  (1) 

Ot Ox 2 

has to be solved subject to the boundary conditions 

T(x,O) = To(x) f o r x e  [0,1] (2) 

~q(1,t) +flT(1,t) = f ( t )  for t e  (0,oo), (3) 

where Tis  the temperature, q = OT/On is the heat flux, 
n is the outward normal at the boundary  of the slab, 
To and f are prescribed functions and ~ and /3 are 
known constants which are not  simultaneously zero. 
The general boundary  condit ion (3) includes the par- 
ticular cases of the Dirichlet condition for ~ = 0 and 
the Neumann  condit ion for 13 = 0. The thermal diffu- 
sivity is assumed constant  and, for simplicity, taken 
to be unity. In addition, temperature readings are 
provided at an arbitrary space location x = de  [0,1], 
namely 

T(x, t )=g(t ) forx=d,  te(O, oo), (4) 

where 9 is a known function. Of course, the selection 
of the boundaries x = 0 and x = 1 as representing the 
unknown and known boundary  conditions, respec- 
tively, is only a matter of convenience as they can be 
reversed without any change in the principle of the 
method of solution. Further, when d = 0 the equa- 
tions (1)-(4) reduce to the direct problem. 

Based on the formulation in equations (1)-(4) it is 
required to determine the temperature 

T(O,t) = ~,( t )  for te(0,oo) (5) 

and the heat flux 

q(O,t) = q~2(t) for t e ( 0 , ~ )  (6) 

at the initial surface location x = 0. However, in prac- 
tice only a finite time domain is analysed such that the 
time t in equations (5) and (6) can be assumed to be 
bounded between 0 and tf, i.e. t e  (0,/f], where tf is an 
arbitrary but  specitied final time of interest. Finally, 
the inverse problem 0 ) - ( 6 )  formulated for an arbi- 
trary location de  (0,1] is similar to the formulation 
obtained by taking d = 1 and this special case will 
also be investigated. In order to discretize the above 
problem the BEM is employed, 

3. THE BOUNDARY ELEMENT METHOD 

The existence of a fundamental  solution for the 
governing differential equation enables the problem 
to be reformulated in an integral representation. For 
the problem considered in Section 2, the one-dimen- 

sional space and time-dependent fundamental  solu- 
tion of the heat conduction equation (1) is of  the form, 
see for example Brebbia et al. [22], 

1 F 
F(x,t;~,z) = exp /  

[4n(t--z)] 1/2 L 

(7) 

where H is the Heaviside function, which is included 
in order to emphasize the fact that the fundamental  
solution is identically zero for z > t. The use of the 
fundamental  solution (7) enables the partial differ- 
ential equation (1) to be transformed into the fol- 
lowing integral equation: 

;o q(x) T(x,t) = q(O,z)F(x,t;O,z) dr 

+ flq(1,QF(x,t;1,Q dr 

--flT(O,QF'(x,t;O,z) dz 

j ~t 

-- T(1,r)F'(x,t;1,z) dr 
0 

f 1 
+ T(y,O)F(x,t;y,O)dy 

0 

(x,0 e [o,1] x (0,oo), (8) 

where the prime denotes the differentiation with 
respect to the outward normal n and q(x) is a 
coefficient function defined to be 1 if x e (0,1) and 0.5 
if x e {0,1 }. For  simplicity, in the formulation of the 
BEM applied in this study, constant  boundary 
elements, i.e. the temperature and the heat flux are 
assumed constant  over each element, are used when 
the integral equation (8) is discretized. Higher-order 
elements, such as linear or quadratic can be used but, 
in general, they are more appropriate for multi- 
dimensional spaces rather than the one-dimensional 
case considered in this study. 

The time interval [0,tr] is divided into N elements 
on each boundary  x = 0 and x = 1 and the space 
interval [0,1] into No elements. If one takes x on the 
boundary,  at x = 0 and x = 1, and uses the initial 
condition (2) then the integral equation (8) becomes 

, ) t j _ l  / 

± (I 'j 
J = I k d t j  
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+I'~T(1,r)F'(x,~;1,r)dr) 

No ~ i 
+ ~, To (y)F(x,~;y,O) dy 

j = l  '~ I 

i =  1,N, (9) 

where x~  {0,1}, tj_~ and tj are the endpoints of an 
element a n d / j  its midpoint.  The boundary influence 
matrices are defined as 

G~j = F(x~,~,.;~j,r) dz i~ = 1,2N (10a) 
dr1_ I 

E~/= F'(xjs;~j,z) dz+0.55~j i,j = 1,2N 

(lOb) 

F~j = F(x~,~i;y,O) dy, i= 1,2N, j = 1,N0, 
' j -  I 

(10c) 

where 6~i is the Kronecker delta symbol, x i = 0 for 
i ~< N, x~ = 1 for i > N and Cj = 0 fo r j  ~< N, Cj = 1 for 
j > N and we note that G~j = Eij = 0 for j > i. With 
the notat ion (10), the integral equation (9) results in 
a system of linear algebraic equations and for constant  
elements has the form 

2 N  2 N  No 

Z G,jqj- Z E,jTj+ Z F~jTo, = 0 
j = l  j = l  j = l  

i = 1,2N, 

(11) 

where ~,qj are the values of the temperature T and 
the heat flux q at the node ~, respectively, and T0j 
takes the value of To at the midpoint  )Tj of the element 

[Yi-,,y~]. 
As yet the discretized form of the boundary con- 

dition (3), namely 

etqi+flT~=f([~)=f i = N + I , 2 N  (12) 

has not been utilized. 
The system of equations (11) and (12) contains 3N 

equations and 4N unknowns,  namely the temperature 
and the heat flux on the boundaries x -- 0 and x = 1. 
In order to complete the system of equations, one must 
add further information represented by the internal 
measuremen's (4). The time interval [0,tr] on the space 
location x = d is further discretized into N-r elements 
with t'~ denoting the midpoint  of the ith element on 
this interval. Applying the discretized form of equa- 
tion (4) into the integral equation (8) results in 

±(f', 9, = T(d,T~) = q(O,z)F(d,T~;O,r) dr 
j=  l k,,)tj i 

+ q(1,r)F(d,g;l,Qdz 
j I 

- r(0,r)F'(d,t~;0,~) d~ 
. / = 1  j 1 

+ T(1,QF (d,t~; 1,z) dz 
dlj 1 ] 

No ~)V) 
+ ~ To (y)F(d,[~;y,O) dy 

j =  1 ' g - I  

i =  1,N,. (13) 

For the special case d = 1 the left hand side of equa- 
tion (13) is multiplied by 0.5. Similarly with the defi- 
nitions (10), one now introduces the following internal 
influences matrices: 

GI~j = F(d,T~;~j,T) dz i =  1,NT j = 1,2N 
- I  

(14a) 

i =  1,Nx j =  1,2N I 
tj 

EI~j = F'(d,~;~j,z) dz 
j-I 

(14b) 

J = F'(x,t;~,r) dz t~[a,b] (16b) 

an analytical treatment can be implemented as 
follows. Taking into account the Heaviside function 
in relation (7) then expression (16a) becomes 

FI~j = F(d,t~;y,O) dy i= 1,NT j = l,N0, 

(14c) 

where ~j = 0 for j ~< N and ~j = 1 for j > N, and we 
note that GI~j= Elij= 0 for tj_, > t~. With the 
notat ion (14), the integral equation (13) results in 
another NT linear equations, namely, 

2 N  2 N  No 

Z Glijqj- Z EI,,Tj+ Z FI,,To, = gi i = 1,Nv. 
i = l  j - I  i - 1  

(15) 

All the integrals that occur in expressions (10) and 
(14) are numerically calculated, but it should be noted 
that singular causes do occur. However, for these 
singular integrals, which are typically of the form 

I =  F(x,t;~,~)dz te[a,b] (16a) 
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I = - - ~ x p [ -  ( x -  ~)21d~. 
[4~(t-~)] 1/2 [_ 4 ( t - ~ ) J  " (17a) 

By differentiating the function F, given by relation 
(7), with respect to the outward normal at ¢ then 
expression (16b) becomes 

J =  - I ' - -  Ix -~ l  expF (~-¢)~ld~ 
Jo [4rt(t-r)] 1/2 L 4 ( t - - r ) J  " 

(17b) 

When t = a, I = J = 0, and when x = ¢, 
I = ( ( t -a) /g)  I/2 and J = 0, such that one may assume 
that te(a,b] and x ¢ ¢. Taking a = ( t - r )  -~/2 such 
that d~ = 2da/(r -~, then this change of variable, to- 
gether with some further calculations, results in 
expressions (17)becoming 

Ii(x-:)~ [ (x-~)~7~ 
I = C Ix--~12 t- 2~1~577e: xp L ~- joer 

(18a) 

J '~lx-CI I- 

where 6 = ( t - a )  -1/2 and 

c_- ex( 

(X- -  ~)ZO'27. 

(x-~)2,~2]. 

(18b) 

2N 2N 2N No 

qi = ~ ~ GijtEjtTt - ~ ~ G~lFjkTok i = 1,2N. 
j ~ l / = l  j = l k = l  

(20) 

Hence, expressions (19) and (20), when introduced 
into equations (15), lead to a lower order system of 
NT linear equations with N unknowns, which in a 
generic form can be written in the form 

AT = b (21) 

where A = (Aij) for i = 1,NT, j = I,N is a matrix 
depending on the geometrical matrices introduced in 
expressions (10) and (14), b = (b,) for i = 1,NT is a 
known vector and T = (Tj) forj  = 1,N is the unknown 
vector of the temperature on the boundary x = 0. 

So far, the application of the BEM and boundary 
conditions (2)-(4) has reduced the IHCP to the linear 
system of algebraic equations (21). A necessary con- 
dition in order for a solution to be found is that 
NT ~> N. Various methods can be considered for the 
solution of this system. 

4.1. Direct method 
Taking NT = N, then the system of equations (21) 

contains N linear equations with N unknowns and, if 
the matrix A is invertible, one simply has 

T = A-  i b. (22) 

However, because the IHCP, equations (1)-(4), is 
improperly posed the system of equations (21) is ill- 
conditioned, and hence a direct solution, as given by 
equation (22), will be either impossible or will produce 
very inaccurate results. 

4. METHODS OF SOLUTION 

At this stage one recalls that the application of BEM 
for the IHCP produced an algebraic system (11), (12) 
and (15) of (3N+NT) linear equations with 4N 
unknowns. In particular, equations (11) and (12) 
enable some of the unknowns, preferably the dis- 
cretized temperatures ~ fo r j  = N +  1,2N, i.e. on the 
boundary x = 1, and the heat fluxes qj for j = 1,2N, 
i.e. on the boundaries x = 0 and x = 1, to be expressed 
as a function of the remaining discretized tem- 
peratures ~ for.i = 1,N, i.e. on the boundary x = 0. 
Other choices c,f elimination of the variables, for 
example when only a Dirichlet condition is prescribed 
by equation (12) with ~ = 0, will not introduce further 
complications. Without loss of generality, one may 
assume that ~ ¢ 0 and then the aforementioned elim- 
ination in equation (12) yields 

qt i = N +  1,2N (19) 
Gt 

whilst the elimination of the heat flux in equation (11) 
yields 

4.2. Least squares method 
Since the system of equations (21) is ill-conditioned, 

more information is necessary and this is achieved 
from the known data equation (4) taking NT > Nsuch 
that the system becomes overdetermined. The number 
of interior measurements, ArT, should be chosen care- 
fully so as not to be excessively large for the method 
to be of use in practical circumstances. However, at 
the same time NT should not be too small because 
sufficient information is required for the uniqueness 
of the desired inverse problem. Using the least squares 
method, based on the minimization of the Euclidian 
norm II A T - b  II 2 and solving a quadratic optimization 
problem, the solution of this system is given by, see 
for example Pasquetti and Le Niliot [23], 

T = (At~A)-lAtrb, (23) 

where tr denotes the transpose of the matrix. 
Results obtained from the application of the least- 

squares method are presented in Section 5. However, 
it has been found that this method produces oscil- 
latory and inaccurate results, especially when noise is 
included into the data in order to simulate the error 
measured data. 
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4.3. Regularization method 
To stabilize the results one may use smoothing con- 

straints [14] and corresponding to the constraint that 
the function be continuous is the zeroth-order reg- 
ularization, namely 

minA0(T) = min{llAT-bll  2 +20 IITII 2} (24a) 

and corresponding to the constraint that the function 
be smooth is the first-order regularization, namely 

minAl (T) = min{llAT-bll  2 +2,  [l~T/Ox[[2}, 

(24b) 

where 2i >/0, for i = 0,1 are the regularization par- 
ameters. The minimizations (24a) and (24b) are global 
and their solutions are given by 

T(20) = (AtrA+2old)-~At~b (25a) 

T0.1) = (AtrA+,~,R)-lAtrb, (25b) 

respectively, where Id is the identity matrix and the 
matrix R = (Rij) has the elements Ri~ = 1 for i = I or 
i = N ,  R i i = 2  for i = 2 , ( N - 1 ) ,  R i ~ / + l ) = - I  for 
i = l , ( N - 1 ) ,  Ri¢i-1)---1 for i = 2 , N  and Rij=O 
otherwise. From expressions (25) it can be seen that 
the solutions of the minimizations (24) depend on the 
regularization parameters 20 and 21 and their choice 
is crucial and difficult. When the regularization par- 
ameter is too large the numerical solution becomes 
smoother and may deviate substantially from the true 
solution, whilst when it is too small the numerical 
solution becomes oscillatory as happens in the limit 
20, 21 ~ 0, when the solutions (25) given by the reg- 
ularization procedures become equal with the solution 
(23) given by the least squares method. However, for 
suitable values of the regularization parameters, 
which may be chosen according to the discrepancy 
principle [24] 

IIAT(2)-bH = [Ig(t) ( . . . . . . .  d) g(t)~ . . . . .  )H (26) 

the regularization procedure produces stable results. 
In order to eliminate the difficulty in choosing the 

regularization parameters, whilst maintaining the 
stability of the numerical solution, the minimal energy 
technique is employed. 

4.4. Minimal energy method 
In order to obtain a stable solution the exact 

internal condition (4) is replaced by the inequality 

I T(d,t) -g ( t ) l  ~< e for te  (0,oo), (27) 

where e ~> 0 is a preassigned quantity, but this may 
introduce uniqueness problems due to enlarging the 
solution space. Using the discretized form of the 
inequality (27), instead of equation (15), and repeat- 
ing the elimination of variables performed at the 
beginning of this section through the relations (19) 

and (20), a system of NT linear constraints (double 
inequalities) with N unknowns is obtained, namely, 

[ A T - b l  ~< E (28) 

and some comments about the choice of E will be 
presented at the end of this section. 

For  the steady case, the minimal energy method is 
based on a classical variational principle of the 
Laplace equation which involves the minimization of 
the kinetic energy functional 

K(u) = ~ IVul 2 dxdy. (29) 

Furthermore, based on Green's formula the relation 
(29) can be expressed in boundary integral form as 

1 t" ~u 
K(.) = 5 j~o./"= ds. (30) 

The minimization of the kinetic energy functional 
(29), subject to the constraints (28), was considered 
by Han [25] for the study of elliptic, improperly posed 
problem and further applications of this method were 
presented by Ingham et al. [17] and Ingham and Yuan 
[26] for the study of steady, linear and nonlinear heat 
conduction equations. Recently, Han et al. [13] pre- 
sented a possible formulation of the method for the 
backward heat conduction problem and the purpose 
of this study is to extend this formulation to IHCP. 

In the present investigation the minimization of the 
kinetic energy 

fl, fo I 8T(x,r) z . KE(T)= ~ uxoz (31) 

is analysed. For  convenience and for a physical 
interpretation the energy equation is derived by mul- 
tiplying the governing equation (1) by T(x,t) and inte- 
grating over the domain [0,1] × [0,tr]. A further inte- 
gration by parts enables the resulting equation to be 
written as 

f i '  ~ "  ,?T(1,z) • ~"~ . . . .  ~T(0,z) • 
J t l , r ) ~ u z -  J01 t o ' r ) ~ - - - x  ur 

_fi fo 18T(x,z)2dxdz 
dx 

if0 l IlT2(x,O)dx, = ~ T 2 (x,tf) d x -  5 j  ° (32) 

where the left hand side denotes the absorbed (or 
released) thermal energy through x = 0 and x = 1 and 
the kinetic energy KE(T), whilst the right hand side 
denotes the inner energy of the system at times t = 0 
and t = tf. Introducing the identity (32) into relation 
(31) yields 
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Ill f t f  KE(T) = T(0,~)q(0,z) dr + T(1,r)q(1,0 dr 
do do 

'fo 'fo' - ~ T2(x , tOdx+~ Ta(x,O) dx. (33) 

In the discretized form relation (33) becomes 

2N 
KE(T) = ~ (t,--tj_,)Tjq, 

j = l  

1 ivo 
+ ~ i~ (Y~-YJ-~)(T~i- T207jf)) (34) 

]=  1 

where, on using tile integral equation (8), 

r(y,,tO = q(O,~)f(y,,tf;O,~) dr 
J=! j-I 

+ q(1,OF(YM61,r) d~ 
j-I  

', , T(O,,)F' (y~,tf;O,r) dr 

+ T(1 ,'c)F'(.fl,tf; 1,0 d~ 
*}lj t / 

~o f y,~ + ~ To (y)F(y,,tf;y,O) dy 
j=l  ~t 

i =  1,N0. (35) 

As in relations (14) one can define the internal influ- 
ence matrices 

G I I i j  = f ( Y i , t f ; ~ j , ' c  ) dr i = 1,No j = 1,2N 
j I 

(36a) 

i =  1,No j =  1,2N EII~j = F'(yi,tr;{j,r ) dr 
j-I 

(36b) 

Fllij = FQ~i,lf;y,O ) dy i = 1,N0 j = 1,N0. 
-i 

(36c) 

These matrices are evaluated numerically with the 
only singularities occurring whenj  ~ {N,2N}. With the 
notation (36), the., integral equation (35) in discretized 
form results in 

2N 2N No 
~, GIIqqj-- ~ EII,jT,+ ~ FII,,Toy = T(y,,tO 

j = l  j = l  j = l  

i =  1,N0. (37) 

The process of elimination given by relations (19), 

(20) and (37) when introduced into expression (34) 
results in a quadratic form for the kinetic energy as a 
function of the unknowns temperatures T = (~)  for 
j = 1,N. This can be written in the following generic 
form: 

KE(T) T t r n T w n t r T  ~- t~ (38) 

where Q = ( Q I j )  for i, j = I , N ,  Q ~ = ( Q , 3  for 
i =  1,N and Q2 are known matrix, vector and 
constant, respectively, depending on the geometry and 
the known boundary conditions (2) and (3). Quad- 
ratic forms of the type (38) may be also obtained when 
discretizing the zeroth and first-order regularization 
functionals A0 and A~ given by expressions (24). How- 
ever, it should be noted that the smoothing constraint 
imposed by the minimization of the kinetic energy 
functional (31) is referred to the whole solution 
domain rather than only to the boundary as is in 
the minimization in expressions (24). Therefore, more 
information about the character of solution may be 
achieved. In addition, based on expression (33) it can 
be seen that the minimization of KE(T) regularizes 
both the boundary temperatures and heat fluxes. 

The minimal energy method now reduces to finding 
the temperatures vector T which minimizes the kinetic 
energy functional equation (38), subject to the linear 
constraints of the type equation (28). This problem is 
solved using the N A G  routine E04UCF based on the 
minimization of an arbitrary smooth function subject 
to certain constraints which may include simple 
bounds of variables and both linear and nonlinear 
constraints [27]. 

Other functionals for which minimization has been 
investigated include 

E,(T) = f]T(O,r)q(O,r)dz + f£fT(l#)q(1,O& 
(39a) 

E 2 ( r ) = ~ f l T 2 ( x , l f ) d x - ~ f l r 2 ( x , O ) d x  

(39b) 

but it was found that these functionals produce poorer 
estimates of the analytical solutions compared with 
those obtained by minimizing the kinetic energy func- 
tional (31). 

At this stage some comments about the method are 
appropriate. Although no regularization parameter is 
introduced explicitly, the numerical solution depends 
on the parameter e through relations (28). It is well- 
known, see for example Brebbia et al. [22], that for the 
direct heat conduction problem, the BEM produces 
a stable and convergent solution, say #N(t)--* g(t). 
Therefore for a fixed number of meshes, N, in the case 
of error free data with #(t) given by expression (4), 
the value of g is taken as 

g = s~ = max{lgN(t)--g(t)[[tE [0,tr]}. (40) 
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Obviously from expression (40), e is taken to be zero if, 
instead of  condit ion (4) we enforce a 'direct problem 
solution'  such as 

T(d,t)  = gN(t),  t 6  [0,tf]. (41) 

AS the number of  elements, N, increases the value of  
~N given by expression (40) decreases and, in the most 
accurate case, might be taken equal with the machine 
precision, see also Philips [28]. For  the case of  error 
measured data which can be simulated by adding to 
the exact data, g(t) ,  a controlled small perturbation, 
if(t), namely 

T(d,t)  = g( t )  + # ( t )  (42a) 

or  by adding random noisy data, ~i, at each node on 
x = d, namely 

T(d,~;) = g i + e i  i =  1,NT (42b) 

the value of  e is taken as 

e = eU+max{lff(t)l] ts  [0,tr]} (43a) 

and 

e = eN+max{l~il i = 1,NT}, (43b) 

respectively. Further,  in expressions (40) and (43) the 
LZ-norm instead of  L~-norm may be employed, but 
then nonlinear constraints given by the L2-norm, 
namely 

IIAT-bII 2 ~< e = (44) 

should be imposed instead of  the linear constraints 
(28). Although the estimations of  e given by 
expressions (40) and (43) seem to assume more a 
priori  information about  the exact data, 9(t ) ,  they only 
require the knowledge of  the order of  accuracy of  the 
BEM employed when solving the direct heat con- 
duction problem in the case of  exact data and the 
tolerance of  the measurements for noisy data. The 
smaller the value of  e that it is possible to choose, the 
better the numerical solution estimates the analytical 
solution. However,  for too small values of  e no solu- 
tion may exist for the minimization, equation (38), 
subject to the constraints, equation (28), and the rou- 
tine used in this study gives an indication whether a 
feasible solution has been obtained or not  under cer- 
tain machine tolerances. Based on this discussion it 
seems that the choice of  e given by expressions (40) 
and (43), appears more natural and easier to 
implement than the choice of  the regularization par- 
ameter, 2, given by expression (26). 

5. NUMERICAL RESULTS AND DISCUSSION 

The functions tested in this section are chosen in 
order to take into account the most difficult cases 
when the IHCP may not have a unique solution when 
the boundness of  the solution is violated or when the 
boundary values are discontinuous [29]. 

Initially, the case of  an unbounded solution is inves- 
tigated by considering a simple smooth function, 

T(x , t )  = 2t + x 2 (45) 

as a test function which satisfies (1), together with a 
Robin boundary condition at x = 1 with ~ =/~ = 1. 
Then the corresponding boundary conditions (2) and 
(3) become 

T(x,O) = To(x)  = x  2 forx~[0 ,1]  (46) 

q(l , t)  + T(1,t) = f ( t )  = 2 t + 3  for t e  (0,oo) 

(47) 

and in the case of  free error measurements the internal 
condition (4) is 

T(d,t)  = g(t)  = 2 t + d  2 for t~ (0 ,~ )  (48) 

and initially the case d = 1 is considered. 
In all the tables and the figures presented in this 

section the results for the surface temperature, T(O,t), 
and the heat flux, q(O,t), are shown at the nodes, /i, 
for i = 1,N, on the boundary x = 0. 

The effect of  the choice of  the value of  tf is illustrated 
by solving the problem in the domain [0,1] × [0,1] and 
in the domain [0,1] × [0,2] and the numerical results 
for the temperature and heat flux on the boundary 
x = 0 at some mesh points obtained with N = No = 40 
and NT = 80 are shown in Tables 1 and 2. It should 

Table la. Temperature on the boundary x = 0 for tf = 1 
when d = 1 

No Least- Minimal Analytical 
t minimization squares energy solution 

0.0125 0.12751 0.03493 0.03648 0.025 
0.2125 1 . 2 5 7 9 5  0.42596 0.42673 0.425 
0.4125 0.07466 0.80297 0.81931 0.825 
0.6125 0.91182 1.21483 1.22733 1.225 
0.8125 11.4408 1.62454 1.61618 1.625 
0.9875 2526.95 3100.43 2.03174 1.975 

Table 1 b. Heat flux on the boundary x = 0 for tf = 1 when 
d = l  

No Least- Minimal Analytical 
t minimization squares energy solution 

The purpose of  this section is to illustrate the appli- 0.0125 0.81217 
cability of  the methods described in Section 4 for 0 . 2 1 2 5  11.6399 
solving IHCP.  As expected, the IHCP is ill-posed and 0.4125 - 10.2086 
therefore the direct method was found to be inap- 0 . 6 1 2 5  -1.70652 

0.8125 -3.77506 
plicable since the discretized system of linear equation 0.9875 20052.3 
(21) is ill-conditioned. 

0.07837 0.09060 0.0 
0.02096 0.00353 0.0 

--0.24720 --0.03358 0.0 
--0.20005 0.01105 0.0 
--0.00729 --0.06665 0.0 

24566.0 --0.50749 0.0 
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Table 2a. Temperature on the boundary x = 0 for tf = 2 
when d = 1 

No Least- Minimal Analytical 
t minimization squares energy solution 

0.025 0.02828 0.04567 0.05705 0.05 
0.425 0.76761 0.85009 0.85170 0.85 
0.825 1.56224 1.64928 1.65203 1.65 
1.225 2.46401 2.45128 2.45113 2.45 
1.625 3.26365 3.25005 3.25162 3.25 
1.975 44.3025 4.02155 3.92362 3.95 

Table 2b. Heat flux on the boundary x = 0 for tr = 2 when 
d = l  

No Least- Minimal Analytical 
t minimization squares energy solution 

0.025 -0.12199 -0.02473 0.03926 0.0 
0.425 -0.78696 0.00033 0.00089 0.0 
0.825 -0.89397 -0.00633 0.00354 0.0 
1.225 0.19995 0.01867 -0.00581 0.0 
1.625 0.18773 0.00025 0.00065 0.0 
1.975 228.856 0.40556 -0.55306 0.0 

be no ted  tha t  the results for the surface tempera ture  
and  heat  flux on the specified bounda ry  x = 1 were 
not  included since in all the cases considered in this 
s tudy they have been obta ined  with a relative error  of  
less than  0.001%. Also, included in these tables are 
the numerical  results obta ined  when no  minimiza t ion  
is performed,  and  when  only the l inear const ra in ts  
equa t ion  (28) are imposed.  It can  be seen tha t  the 
me thod  wi thout  min imiza t ion  is inaccurate  and  is 
therefore not  discussed further.  F r o m  Tables l a  and  
2a it can be seen tha t  the numerical  results for the 
temperature ,  using ~:he least squares and  the minimal  
energy methods ,  are very similar to the analytical  solu- 
t ion up to a value of  approximat ive  0.9 tf. However,  
this conclusion is invalid for the heat  flux when tf = 1, 
see Table lb ,  and  this is due to the surface heat  flux 
at  t ime l being dependent  on  the inter ior  values at  
t imes before and  after  t [16]. Also Tables 1 and  2 
il lustrate tha t  the surface heat  flux is more  difficult to 
calculate accurately than  are the surface temperatures.  
Therefore,  the inaccurate  values of  the tempera ture  
near  the end of  the t ime interval  [0,tf] will influence 
the accuracy of  the surface heat  flux over the whole 
t ime interval.  Fur the rmore ,  in Table  1 b the instabil i ty 
and  oscillations in predict ing the surface heat  flux 
appear  present  when  using the least squares method.  
This is p robab ly  because when using the least squares 
me thod  the solution exhibits oscillatory behav iour  
and  becomes uns table  if  a large n u m b e r  of  unknowns  
are to be est imated (parameter  est imation),  whilst  in 
the minimal  energy the minimiza t ion  of  a funct ional  
reduces this effect. However,  f rom Tables 2a and  b, 
where t~= 2, it can be observed tha t  the results 
obta ined  using bot~t numerical  methods  for the sur- 
face tempera ture  and  the heat  flux are sufficiently close 

TCo,t) 
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t . 5 -  

i . 0 -  

0.5-  

0'00.0 01~ 0!4 0), 018 i)O ' 
r<o , t )  
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t . 0 -  
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0.0 z I t 
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Fig. l. The numerical results for the boundary temperature, 
T(0,t), for the first test example in the case of the errorless 
data obtained using (a) the least-squares method, (b) the 
minimal energy method. The different mesh sizes used in the 
discretizations were (i) • • • N = 10, NT = 20, (ii) + + 
+ N = 20,  N v  :-- 40, (iii) e e e  N = 40, Nv = 80 and - -  is 

the analytical solution. 

to the analytical  solut ion for values of  t ~< tf/2 = 1. 
Hence,  it is concluded tha t  if [0,tf] is the t ime interval  
of  interest  then solving the p rob lem on an  extended 
interval  gives rise to results which are in good agree- 
men t  with  the analytical  solut ion on  [0,tf], bo th  for 
the bounda ry  tempera ture  and  the heat  flux. 

In order  to il lustrate the rate of  convergence of  the 
least squares and  the minimal  energy methods ,  the 
numerical  results are plot ted in Figs. la,  2a and  lb ,  
2b, respectively, using three mesh sizes in the dis- 
cretization,  namely: (i) N = 10, NT = 20; (ii) N = 20, 
Nv = 40; (iii) N = 40, NT = 80. The value of  No was 
found not  to significantly affect the results and  
th roughou t  all the calculat ions the value of  No was 
taken  to be 40. Also, in the numerical  results presented 
in Figs. l b  and  2b the small  control  quant i ty  e was 
chosen to be 0(10-3),  which was found to be 
sufficiently small  tha t  any fur ther  decrease in this value 
did not  produce  any improvement  in the agreement  
with  the analytical  solut ion and  sufficiently large to 
ensure tha t  the rout ine  used gave a feasible solution. 
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Fig. 2. The numerical results for the boundary heat flux, 
q(O,t), for the first test example in the case of errorless data 
obtained using (a) the least-squares method, (b) the minimal 
energy method. The different mesh sizes used in the 
discretinizations were (i) • • • N = 10, ArT = 20, (ii) 
+ + + N =  20, ArT = 40, (iii) Ne N =  40, ArT = 80 and 

- -  is the analytical solution. 

distance d increases, and consequently increasing the 
domain in which the actual inverse problem is posed, 
when extending the time interval to tf = 2 in exactly 
the same way as it has been explained for the results 
presented in Tables 2, it is possible to obtain a weak 
dependence of the results in the region of interest [0,tf] 
on the value o fdas  will be shown later in a comparison 
between Tables 2 and 4a. By taking the measurements 
closer to the surface where the unknowns are located, 
better agreement with the analytical solution is 
obtained but an optimal distribution of where the 
sensors should be located and where the time measure- 
ments should be taken remains a difficult problem 
[30], and will be investigated in another study. Finally, 
other types of boundary conditions, e.g. Dirichlet or 
Neumann  have been tested and they were found to 
have very little effect on the accuracy of the results. 

Since the IHCP is an improperly posed problem it 
is necessary to investigate the stability of the numerical 
schemes that one has employed. Therefore some 
errors are introduced into both the internal and the 
boundary data through a small perturbation function 
T(x, t ) .  Then the stabilility of the problem concerns 
how large an error will be generated by this per- 
turbation in the solution. Thus, we consider 

T1 (x,t)  = T(x, t )  + T(x , t ) ,  (49) 

where T(x , t )  is the original function given by the defi- 
nition (45) and the perturbation function 7~(x,t) is 
expressed as 

(50) 

From Figs. 1 and 2 it is observed that the numerical 
solutions, as obtained both by using the least squares 
and the minimal energy methods, are in good agree- 
ment  with the analytical solution and the accuracy in 
bot~ numerical methods improves as the number  of 
elements N on the space boundaries increase. Fur-  
thermore, using the three mesh sizes (i), (ii) and (iii) 
the values of the kinetic energy given by expression 
(38) for tr = 1, were found to be 1.36876, 1.34615 and 
1.33178, respectively, and these values appear to be 
converging to the analytical value of 4/3. Finally, from 
Figs. 1 and 2 it can be observed that the mesh size (iii) 
produces results which are closest to the analytical 
solution and therefore in order to illustrate further 
results the mesh size is fixed at N---No = 40 and 
NT = 80. 

The effect of  the value of dE [0,1] can be also exam- 
ined from Table 3a where d = 0.25, Table 3b where 
d = 0.5 and Tables la, b where d = 1. Although the 
results obtained for the temperature and heat flux at 
x = 0 and with tf = 1 appear to deteriorate as the 

where 7 = k 2 7 z 2 ,  X ( 7 )  = 0 if k = 0, %(7) = 1 if k ¢ 0 
and k is a constant which has to be prescribed. Physi- 
cally the perturbation function 7 ~ represents the quasi- 
stationary temperature distribution in a semi-infinite 
solid subject to a periodically varying heat flux at the 
boundary  surface x = 0, see 0zi~ik [31]. The per- 
turbation 7~satisfies the heat equation (1) and has the 
maximum amplitude 

T m a x  -~- Z(Y)x~exp ( -Vx) .  (51) 

Equation (51) shows that the maximum temperature 
in the interior region attenuates exponentially as the 
distance x from the surface increases. However, the 
inverse problem in which the surface temperature is 
to be determined through the use of the internal 
measurements, becomes sensitive to the errors in the 
input data which will be amplified exponentially with 
the distance x. It is clear from equation (51) that 
when ~, is sufficiently large the maximum value of the 
amplitude 7~m,x is very small. Thus 7~represents a small 
perturbation to the exact input data equations (46)- 
(48) which when perturbed become 



Application of  the boundary element method 

Table 3a. Temperature and heat flux on the boundary x = 0 for tf = 1 when d = 0.25 

1513 

Least-squares Minimal energy Analytical solution 

t T(O,t) q(0,t) T(O,t) q(O,t) T(O,t) q(O,t) 

0.01;!5 0.02312 -0.01526 0.02374 -0.01039 0.025 0.0 
0.2125 0.42492 -0.00005 0.42458 -0.00094 0.425 0.0 
0.4125 0.82491 -0.00001 0.82453 0.00085 0.825 0.0 
0.6125 1.22505 0.00065 1.22530 0.00334 1.225 0.0 
0.8125 1.62514 0.00027 1.62535 0.00070 1.625 0.0 
0.98"75 1.97134 -0.03469 1.97412 -0.01108 1.975 0.0 

Table 3b. Temperature and heat flux on the boundary x = 0 for tr = 1 when d = 0.5 

Least-squares Minimal energy Analytical solution 

t T(O,t) q(0,t) T(O,t) q(O,t) T(O,t) q(O,t) 

0.01125 0.019349 -0.04520 0.02419 -0.00650 0.025 0.0 
0.21125 0.42505 -0.00025 0.42560 -0.00037 0.425 0.0 
0.41125 0.82527 0.00281 0.82561 0.00149 0.825 0.0 
0.61125 1.22502 0.00037 1.22544 0.00024 1.225 0.0 
0.8125 1.62498 --0.00018 1.62555 0.00130 1.625 0.0 
0.9875 2.00066 0.21742 1.93569 -0.41421 1.975 0.0 

Table 4a. The temperature and heat flux on the boundary x = 0 for tr = 2 when d = 0.25 and k = 0 

Least-squares Minimal energy Equation (49) 
k = 0  
t T(O,t) q(O,t) T(O,t) q(O,t) T,(O,t) q,(O,t) 

0.025 0.04546 -0.02571 0.04447 -0.03124 0.05 0.0 
0.225 0.44939 -0.00095 0.45043 0.01002 0.45 0.0 
0.425 0.84953 0.00005 0.84999 0.00148 0.85 0.0 
0.625 1.24970 0.00044 1.25081 0.00250 1.25 0.0 
0.825 1.65017 0.00222 1.65161 0.00311 1.65 0.0 
0.975 1.94096 -0.05749 1.93706 -0.09427 1.95 0.0 

Table 4b. The temperature and heat flux on the boundary x = 0 for tr = 2 when d = 0.25 and k = 3 

Least-squares Minimal energy Equation (49) 
k = 3  
t T(O,t) q(O,t) T(O,t) q(O,t) T~(O,t) qffO,t) 

0.025 0.04867 0.07802 0.04802 0.07436 -0.68732 41.7000 
0.225 0.44950 0.00116 0.45039 0.01099 1.82897 150.358 
0.425 0.84954 0.00025 0.84999 0.00162 0.70737 - 137.647 
0.625 1.24970 0.00052 1.25082 0.00258 -0.03796 -62.5226 
0.825 1.65017 0.00227 1.65161 0.00316 2.61444 177.544 
0.975 1.94096 -0.05745 1.93706 -0.09423 0.78387 -32.5121 

7", (x,O) = r l  o ( x )  = To (x )  + 7"0 (x )  = x 2 + To (x )  

(52a) 

q, (1,t) + TI (1, t) = f~ (t) = f ( t )  +]'(t) = 2t + 3 +]'(t) 

(52b) 

TI (d,t) = gl (t) = g(O +t](t) = 2 t + d  2 +9( t ) ,  

(52c) 

where  ql = dTdOn and  

j~t)  = x(7)[(1 - -27)  cos(2c~2t--~) 

+ s i n  (2~2t--~)]  exp ( - -7 )  (53b) 

2 /t i f ( t ) =  Z(7) ,v /2cos  (27 t - T d -  ~ ) e x p  ( - T d ) .  

(53c) 
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Clearly i fo,fand ~ can be made as small as one wishes 
by increasing the value of 7. However, at the surface 
x = 0  

if(0,t) = Z(7)x~cos  (272t-- 4 )  (54a) 

aif 
63 x (0,1) = -- 2)~(~/) COS (272 l) (54b) 

and these terms are of order of unity. Hence 
if = T, - T is of  the order of unity at x = 0, implying 
that the continuous dependence on the initial data is 
violated. 

Tables 4a and 4b show the numerical results for the 
surface temperature and heat flux for various values 
of the time te  (0,1) obtained by solving the problem 
with tf = 2 and for k = 0 and 3, respectively. The 
internal condition (52c) is imposed at d = 0.25. From 
these tables, corresponding to the perturbed and 
unperturbed solutions, it is found that the results for 
the surface temperature are almost identical, but they 
do differ from the perturbed solution (49). The values 
of the heat flux differ slightly but are still reasonably 
accurate, since they are different from the large values 
of the heat flux given by differentiating equation (49). 
Consequently, the least squares and the minimal 
energy methods are able to recognize the correct solu- 
tion when a small amount  of noise is included in the 
input data. 

Figure 3a shows the numerical results for the sur- 
face temperature and the heat flux, respectively, 
obtained by using the numerical methods in com- 
parison with the unperturbed solution (45) when a 
large noise is included into the data. This large noise 
is simulated by taking 7 = 2~2, i.e. k = x/2, in 
expression (50) which defines the perturbation func- 
tion if. The surface temperature appears accurate 
when using both of the numerical methods, see Fig. 
3a, but Fig. 3b shows that some of the numerical 
results for the surface heat flux exhibit oscillatory 
behaviour and that they are inaccurate when using 
the least squares method. However, when using the 
minimal energy technique these large oscillations are 
alleviated, showing the stability introduced by this 
method. 

A more realistic procedure of simulating error 
measurements consists in the introduction of some 
noise into the internal condition (4) at each node, ~, 
see also expression (42b), namely 

T(d,T~) = g([~) = ffi = g~+e~ i = 1,NT, (55) 

where ~ is a Gaussian random variable of mean zero 
and standard deviation a which is taken to be some 
percentage, p, of  the maximum absolute temperature 
at the location x = d, namely 

= p x m a x { ] T ( d , t ) l l t e [ O , t d } .  (56) 
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Fig. 3. A comparison between the results obtained using - -  
the analytical solution, [] [] [] the least squares method 
and e n  the minimal energy method for (a) the boundary 
temperature, T(O,t), and (b) the boundary heat flux, q(O,t), 
for the case in which controlled errors given by expression 
(50) with 7 = 2n 2 are included in the input data for the first 

test example. 

The variables ei, for i = 1 ,NT, are randomly generated 
by using the N A G  routine G 0 5 D D F  [32]. 

Figure 4 shows the exact data function, g, given 
by expression (48) and a p% = 5% random noise 

OCt),~Ct) 

4 -  

3- 

2- 

°o.o oI~ ~!o A ~!o' 
Fig. 4. The exact data function 9' (--) and a 5% random 

noise function ~ ( - -O- - )  for the first test example. 
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-0.2- 

-13.4- 

Fig. 5. The results for the boundary heat flux, q(O,t), obtained 
using - -  the analytical solution, A A J ,  the zeroth-order 
regularization procedure with 20 = 0.5, x x x thefirst-order 
regularization procedure with 21 = 2 and • • • the minimal 
energy technique with ~ = 0.4 for the case in which 5% noise 
is included into the measured data for the first test example. 

i1(o,0 

1.5- 

, 0  

0.5- 

0.0- ~ 

-0.5- 

- t  . 0  t i 5 i i t 
0.0 0.5 II0 I. 2.0 2.5 310 

Fig. 6. A comparison of the results for the boundary heat 
flux, q(O,t), obtained using - -  the analytical solution 
and - - 0 - -  the minimal energy technique for various time 
intervals 2tr~{1, 2, 3} with the corresponding values of 
e ~ {0.2, 0.4, 0.5}, respectively, for the case in which 5 % noise 
is included into the measured data for the first test example. 

function, g, given b'.¢ expression (55) in the interval 
[0,tf( = 2)] when d = 0.25. The function g is introduced 
in order to simulate a typical set of  error measured 
data which are likely to be recorded in the practical 
measurements of  the temperature inside a heat con- 
ducting body. 

Figure 5 presents the numerical results for the sur- 
face heat flux obtained using the minimal energy tech- 
nique with e = 0.4 taken according to relation (43b), 
the zeroth-order regularization with 2o = 0.5 and the 
first-order regularization with 21 = 2, for the simple 
test function given by expression (45) which satisfies 
a Neumann boundary condition (3) on x - -  1, i.e. 

= 1 and/3  = 0, for a 5% noisy set of  data shown 
in Fig. 4. The regularization method was chosen tbr 
comparison because it is a simple stable method which 
produces, in general, roughly the same good estimates 
as other stable methods, e.g. function specification, 
conjugate gradient, mollification, etc. Criteria for 
comparison of  these stable methods can be found in 
Beck [33]. F rom the comparison with the analytical 
solution it is observed that both the regularization 
procedures and the minimal energy technique offer 
stable estimates and their L2-error estimates defined 
by 

err = Ilq(O,l)(Calculated)--q(O,t)(analytical)lt (57) 

are 0.054, 0.097 and 0.074, respectively. The least 
squares numerical results are not  presented herein 
since they produce an unstable solution, see Lesnic et 
al. [34]. It should be noted that in Fig. 5 the time 
interval of  interest was taken to be [0,if(= 1)] although 
the problem was solved in the extended time interval 
[0,2tf(= 2)1. 

Figure 6 shows the numerical results which have 
been obtained for the surface heat flux, q(O,t), on 
the interval t e  [0,2tf] when using the minimal energy 
technique for various values of  trs {0.5, 1, 1.5} with 

the corresponding parameters ee{0.2,  0.4, 0.5}, 
respectively, when 5% noise is included into the mea- 
sured data. F r o m  this figure it is observed that up to 
the final time of  interest tr, the numerical results pro- 
vide a good estimate of  the analytical solution, and 
in the present work we have decided to ignore the 
numerical results on the remaining part of  the time 
interval from tf to 2tf, This effect is under further 
investigation as it probably depends on the 
unbounded behaviour of  the test function chosen, the 
amount  of  noise included and/or  the form of the func- 
tional to be minimized. 

In the next example a more severe test function is 
taken, see Carslaw and Jaeger [35], namely 

"v(x,t), t e  [0,0.5) 

v(x , t ) - -2v (x , t - -0 .5 ) ,  t~[0.5,1) 

v(x,t) -- 2v(x , t - -  0.5) + 2v(x , t - -  l) ,  
T(x, t)  = 

t~[1,1.5) 

v(x,O - 2 v ( x , t - 0 . 5 )  + 2 v ( x , t -  1) 

- 2 v ( x , t - l . 5 ) ,  t~ [1.5,2], 

(58) 

where 

3(1 - x )  2 - 1 
v(x,t)  - 6 + t  

~ ( - i ) "  . , ,  
-- z , ~ l  - - ~ z o s l ,  n n t n 2 n  2 1 - -  x))exp( - n 2 n 2 t) (59) 

which includes a discontinuous surface heat flux on 
x = 0 .  

Figure 7 illustrates the numerical results for the 
surface heat flux obtained using the minimal energy 
technique with e = 0.02, the zeroth- and first-order 
regularization methods with )~0 = 2~ -- 0.01, for the 
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Fig. 7. The results for the boundary heat flux, q(0,t), obtained 
using - -  the analytical solution, A A A  the zeroth-order 
regularization procedure with 2o = 0.01, × × × the first- 
order regularization procedure with 2j = 0.01 and 0 0 0  
the minimal energy technique with e = 0.02 for the case in 
which 5% noise is included into the measured data for the 

second test example. 

test function given by expression (58) which satisfies 
a Neumann boundary condition (3) at x = 1, where 
there is 5% noise in the internal temperature measure- 
ments at the space location d = 0.25 during the time 
interval [0,tf(= 2)]. Due to the discontinuities of the 
heat flux at the corners of its square-wave rep- 
resentation by the step function in Fig. 7, inaccuracies 
of the numerical solution near these points are to be 
expected. As for the first test example the reg- 
ularization procedures and the minimal energy tech- 
nique produce stable approximate estimations for the 
analytical solution and their LZ-error estimates, 
defined by expression (57), are 0.338, 0,326 and 0.192, 
respectively. 

Finally, extensions to nonlinear and higher dimen- 
sions inverse heat conduction problems of the numeri- 
cal methods employed in this study can be easily 
accommodated. 

6. CONCLUSIONS 

In inverse heat conduction problems the unknown 
surface temperature and heat flux are associated with 
the boundary only, and in this study the discretization 
of the IHCP has been performed by using the BEM 
which has the advantage that no domain discretization 
is needed as requested when using finite differences or 
finite elements. Based on the BEM, the IHCP is 
reduced to solving an ill-conditioned linear system of 
algebraic equations and therefore, the direct method 
presented in Section 4.1 cannot be applied. This results 
in the nonuniqueness of the solution which may be 
overcome by increasing the number of equations. Two 
test examples are analysed in order to simulate the 
theoretical uniqueness problems given by the case of 
unbounded solutions or discontinuous boundary 
values. For exact data the least squares method pre- 

sented in Section 4.2 gives good agreement with the 
analytical solutions for the surface temperature and 
heat flux provided that, in general, the known bound- 
ary condition is extended over a suitable additional 
time interval such that accurate results can be 
obtained over the complete earlier time domain. How- 
ever, this method has been found unstable with respect 
to small perturbations in the input data and therefore 
the regularization procedure (zeroth- and first-order) 
has been introduced in Section 4.3. The regularization 
procedure modifies the least-squares method by 
adding an implicit order smoothing constraint for the 
boundary unknowns through the introduction of a 
regularization parameter. For a suitable choice of this 
parameter the regularization procedure produced a 
good stable estimation of the analytical solutions. 
However, this choice may not be an easy task in prac- 
tical computations. In order to eliminate this problem, 
whilst maintaining the stability, the minimal energy 
technique based on the minimization of the kinetic 
energy functional subject to certain constraints has 
been introduced in Section 4.4. The minimization of 
the kinetic energy is physically realistic and imposes a 
stronger smoothing constraint for the whole domain 
solution. The linear constraints depend on a small 
positive quantity, e, which can be chosen more natur- 
ally and easier than choosing the regularization 
parameter. The numerical results obtained using the 
minimal energy technique show a good stable esti- 
mation of the analytical solutions, provided that, in 
general, an extension of the time interval on which 
the boundary conditions are imposed is performed. 
Although the same good estimates are also achieved 
when using the regularization procedures, it is con- 
cluded that the minimal energy technique offers an 
easier, stable alternative of replacing the reg- 
ularization parameter and, in addition, based on the 
minimization of the kinetic energy functional, the 
smoothing constraint is stronger since it is imposed 
for the whole domain solution. Furthermore, the 
extension of the BEM accompanied by the minimal 
energy technique to higher dimensions IHCP is 
straightforward. 
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